Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Minerva Med ; 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20244385

ABSTRACT

The COVID-19 disease wreaked havoc all over the world causing more than 6 million deaths out of over 519 million confirmed cases. It not only disturbed the human race health-wise but also caused huge economic losses and social disturbances. The utmost urgency to counter pandemic was to develop effective vaccines as well as treatments that could reduce the incidences of infection, hospitalization and deaths. The most known vaccines that could help in managing these parameters are Oxford-AstraZeneca (AZD1222), Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273) and Johnson & Johnson (Ad26.COV2.S). The effectiveness of AZD1222 vaccine in reducing deaths is 88% in the age group 40-59 years, touching 100% in the age group 16-44 years & 65-84 years. BNT162b2 vaccine also did well in reducing deaths due to COVID-19 (95% in the age group 40-49 years and 100% in the age group 16-44 years. Similarly, mRNA-1273 vaccine showed potential in reducing COVID-19 deaths with effectiveness ranging from 80.3 to 100% depending upon age group of the vaccinated individuals. Ad26.COV2.S vaccine was also 100% effective in reducing COVID-19 deaths. The SARS-CoV-2 emerging variants have emphasized the need of booster vaccine doses to enhance protective immunity in vaccinated individuals. Additionally, therapeutic effectiveness of Molnupiravir, Paxlovid and Evusheld are also providing resistance against the spread of COVID-19 disease as well as may be effective against emerging variants. This review highlights the progress in developing COVID-19 vaccines, their protective efficacies, advances being made to design more efficacious vaccines, and presents an overview on advancements in developing potent drugs and monoclonal antibodies for countering COVID-19 and emerging variants of SARS-CoV-2 including the most recently emerged and highly mutated Omicron variant.

3.
Hum Vaccin Immunother ; 18(5): 2065824, 2022 11 30.
Article in English | MEDLINE | ID: covidwho-1860753

ABSTRACT

The emergence of different variants of SARS-CoV-2, including the Omicron (B.1.1.529) variant in November 2021, has resulted in a continuous major health concern at a global scale. Presently, the Omicron variant has spread very rapidly worldwide within a short time period. As the most mutated variant of SARS-CoV-2, Omicron has instilled serious uncertainties on the effectiveness of humoral adaptive immunity generated by COVID-19 vaccination or an active viral infection as well as the protection provided by antibody-based immunotherapies. Amidst such high public health concerns, the need to carry out booster vaccination has been emphasized. Current evidence reveals the importance of incorporating booster vaccination using several vaccine platforms, such as viral vector- and mRNA-based vaccines, as well as other platforms that are under explorative investigations. Further research is being conducted to assess the effectiveness and durability of protection provided by booster COVID-19 vaccination against Omicron and other SARS-CoV-2 variants.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics
4.
Environ Res ; 209: 112816, 2022 06.
Article in English | MEDLINE | ID: covidwho-1654412

ABSTRACT

Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.


Subject(s)
COVID-19 , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Global Health , Humans , Pandemics , SARS-CoV-2/genetics
5.
Poult Sci ; 99(6): 2944-2954, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-824735

ABSTRACT

This trial assessed the efficacy of a commercial essential oil (EO) product on the immune response to vaccination against Newcastle disease (ND) and subsequent challenge with virulent ND virus genotype VII (vNDv genotype VII) by using the following experimental groups of broiler chickens (Each group had 21 birds with 3 replicates in each, n = 7): NC (negative control), PC (positive control), VC (vaccinated), and VTC (vaccinated and treated with EOs). Moreover, in a trial to study the effect of EOs on vNDv genotype VII in vivo as a preventive or therapeutic measure, 2 additional ND-vaccinated groups were used (PRV: medicated 1 D before vNDv challenge for 5 D; and TTT: medicated 2 D after vNDv challenge for 5 D). In addition, the immune-modulatory effect of EOs on the avian influenza (AI), infectious bronchitis (IB), and infectious bursal disease (IBD) vaccines was assessed through the serological response. The use of EOs along with administration of ND vaccines (VTC) revealed a lower mortality rate (42.86%), clinical signs, and postmortem lesion score (11) than ND vaccines alone (VC) (52.28% mortality and score 15), in addition to lower hemagglutination inhibition (P < 0.05) (6.5 ± 0.46) and viral shedding (10 log 2.28 ± 0.24) titres 1 wk after challenge in comparison with VC (8.63 ± 0.65 and 10 log 3.29 ± 0.72, respectively). Nevertheless, the EOs mixture (VTC) (1952 ± 28.82) did not significantly (P > 0.05) improve growth performance compared with the nontreated birds (NC and VC) (1970 ± 19.56 and 1904 ± 38.66). EOs showed an antiviral effect on vNDv in vivo (in chickens) as a preventive measure (PRV) as well as some therapeutic effect (TTT) through decreasing the viral shedding titres (loNC0), mortality rate, and severity of clinical signs and postmortem lesions, in addition to serum malondialdhyde level. Regarding the other viruses, the EOs mixture did not improve the immune response to the AI and IB vaccines but significantly (P < 0.05) increased the ELISA antibody titre for IBD virus at the 28th D of age (2,108 ± 341.05). The studied EOs mixture showed an immune-stimulating response to ND and IBD vaccines, antiviral effect against ND virus, especially if administered before the challenge; however, it did not have a growth-promoting effect.


Subject(s)
Chickens , Immunity, Humoral , Newcastle Disease/prevention & control , Newcastle disease virus/immunology , Oils, Volatile/pharmacology , Poultry Diseases/prevention & control , Viral Vaccines/pharmacology , Animals , Immunity, Humoral/drug effects , Oils, Volatile/administration & dosage , Viral Vaccines/administration & dosage , Viral Vaccines/classification
SELECTION OF CITATIONS
SEARCH DETAIL